Wednesday, November 5, 2014

Student Project mahasiswa PSPDG FK UNUD pada blok Basic Dentistry, Makalah ini tentang struktur mikroskopis kelenjar saliva (parotis, submandibularis dan sublingualis) dan peranannya dalam menjaga kesehatan (sistem pertahanan) rongga mulut STUDENT PROJECT PSPDG 2014-kelenjar saliva dan perannya dalam sistem pertahanan rongga mulut.pdf

Student Project mahasiswa PSPDG FK UNUD pada blok Basic Dentistry, Makalah ini tentang struktur mikroskopis tonsil (tonsila palatina, lingualis, dan faringeal) dan peranannya dalam sistem pertahanan rongga mulut terhadap patogen



Student Project Blok Basic Denstistry PSPDG FK UNUD -Tonsil.pdf

Tuesday, October 14, 2014

Basic Tissue /Jaringan Dasar-Powerpoint

Presentasi ini tentang empat jaringan dasar yaitu : jaringan ikat, otot, saraf dan epitel yang menyusun semua organ pada tubuh manusia. Memahami pengertian, struktur serta karakteristik empat jaringan dasar sangat penting dalam rangka memahami struktur mikroskopis organ tubuh, karena semua organ tubuh manusia disusun oleh kombinasi dari empat jaringan dasar ini.


Powerpoint ini dipresentasikan pada tanggal 15 Oktober 2014 untuk mahasiswa PSPDG FK UNUD .

Wednesday, September 3, 2014

Presentasi ini disampaikan pada kuliah studium generale Program Studi Fisioterapi Fakultas Kedokteran Universitas Udayana pada tanggal 5 September 2014. Materi ini penting bagi semua mahasiswa baru karena cara belajar di Universitas sangat berbeda dari cara belajar di sekolah.

Cara belajar di Universitas menganut metode belajar mandiri (independent learning), pada metode ini lebih menekankan pada BELAJAR bukan MENGAJAR. Dosen lebih berperan sebagi fasilitator dan menciptakan suasana belajar, dan mahasiswa dituntuk untuk mencari ilmu secara mandiri. 

Belajar mandiri memberikan banyak keuntungan bagi mahasiswa baik dalam proses pembelajaran maupun dalam menjalami profesinya. 

Pada presentasi ini akan dijelaskan  tentang definisi belajar mandiri/Independent Learning, karakteristik belajar mandiri, peran guru/dosen dalam belajar mandiri, bagaimana cara menjadi independent learner (pelajar yang mandiri), peran pelajar/mahasiswa dan guru/dosen dalam belajar mandiri, dan peran study Guide dalam independent learning tentang difinisi 
Selamat menyimak, semoga bermanfaat...

Sunday, July 14, 2013

Kepada mahasiswa Fakultas Kedokteran Universitas Udayana semester VI yang sedang mengikuti Blok The Reproductive System and Disorders diharapkan untuk membaca pengantar praktikum histology sebelum mengikuti praktikum pada hari Jumat tanggal 19 Juli 2013.

Pengantar praktikum histology bisa dibaca pada alamat/ link ini :

JIka Anda ingin versi PDF bisa didownload di alamat ini :


Diharapkan juga untuk kembali membaca teks book histologi, sebelum praktikum agar pemahaman tentang struktur histologis male and female reproductive system menjadi lebih baik.

Monday, April 29, 2013

Animasi ini menjelaskan tentang fungsi cerebrospinal fluid (CSF), tempat produksi CSF, Aliran CSF dari ventrikel sampai ke subarachnoid space, ke central canal medulla spinalis dan akhirnya diabsorbsi kembali ke vena. Animasi ini sangat membantu untuk memahami produksi dan fungsi CSF.

Sunday, April 28, 2013

Blood-Brain Barrier Animation

Pada video/animasi ini ditampilkan struktur Blood-Brain Barrier yang terutama disusun oleh tight-junction dari endothel, dan dukung oleh Astrosit. Dijelaskan juga beberapa masalah yang dihadapi jika ingin memasukan obat kedalam jaringan otak. Dan saat ini para ahli sedang mengembangkan metode untuk dapat memasukan obat kedalam jaringan otak. Semoga video ini bisa membantu Anda dalam memahami Blood-Brain Barrier. Selamat Belajar

Saturday, April 27, 2013

Mammalian neurons usually do not divide, and their degeneration represents a permanent loss. Peripheral nerve fibers can regenerate if their perikaryons are not destroyed.

In contrast to nerve cells, neuroglia of the central nervous system—and Schwann cells and ganglionic satellite cells of the peripheral nervous system—are able to divide by mitosis. Spaces in the central nervous system left by nerve cells lost by disease or injury are invaded by neuroglia.

Because nerves are widely distributed throughout the body, they are often injured. When a nerve axon is transected, degenerative changes take place, followed by a reparative phase.

In a wounded nerve fiber, it is important to distinguish the changes occurring in the proximal segment from those in the distal segment. The proximal segment maintains its continuity with the trophic center (perikaryon) and frequently regenerates. The distal segment, separated from the nerve cell body, degenerates.

Axonal injury causes several changes in the perikaryon: chromatolysis, ie, dissolution of Nissl substances with a consequent decrease in cytoplasmic basophilia; an increase in the volume of the perikaryon; and migration of the nucleus to a peripheral position in the perikaryon.

In the nerve stub distal to the injury, both the axon and the myelin sheath degenerate completely, and their remnants, excluding their connective tissue and perineurial sheaths, are removed by macrophages. While these regressive changes take place, Schwann cells proliferate within the remaining connective tissue sleeve, giving rise to solid cellular columns. These rows of Schwann cells serve as guides to the sprouting axons formed during the reparative phase.

After the regressive changes, the proximal segment of the axon grows and branches, forming several filaments that progress in the direction of the columns of Schwann cells. Only fibers that penetrate these Schwann cell columns will continue to grow and reach an effector organ.

The choroid plexus consists of invaginated folds of pia mater, rich in dilated fenestrated capillaries, that penetrate the interior of the brain ventricles. It is found in the roofs of the third and fourth ventricles and in part in the walls of the lateral ventricles.

The choroid plexus is composed of loose connective tissue of the pia mater, covered by a simple cuboidal or low columnar epithelium made of ion-transporting cells .

The main function of the choroid plexus is to elaborate cerebrospinal fluid, which contains only a small amount of solids and completely fills the ventricles, central canal of the spinal cord, subarachnoid space, and perivascular space. Cerebrospinal fluid is important for the metabolism of the central nervous system and acts as a protective device against mechanical shocks.

Cerebrospinal fluid is clear, has a low density (1.004–1.008 g/ mL), and is very low in protein content. A few desquamated cells and two to five lymphocytes per milliliter are also present. Cerebrospinal fluid is continuously produced and circulates through the ventricles, from which it passes into the subarachnoid space. There, arachnoid villi provide the main pathway for absorption of cerebrospinal fluid into the venous circulation.

The blood–brain barrier is a functional barrier that prevents the passage of some substances, such as antibiotics and chemical and bacterial toxic matter, from the blood to nerve tissue.

The blood–brain barrier results from the reduced permeability that is characteristic of blood capillaries of nerve tissue. Occluding junctions, which provide continuity between the endothelial cells of these capillaries, represent the main structural component of the barrier. The cytoplasm of these endothelial cells does not have the fenestrations found in many other locations, and very few pinocytotic vesicles are observed. The expansions of neuroglial cell processes that envelop the capillaries (astrocytes) are partly responsible for their low permeability.

Popular Posts